8,086 research outputs found

    Random-Singlet Phase in Disordered Two-Dimensional Quantum Magnets

    Full text link
    We study effects of disorder (randomness) in a 2D square-lattice S=1/2S=1/2 quantum spin system, the JJ-QQ model with a 6-spin interaction QQ supplementing the Heisenberg exchange JJ. In the absence of disorder the system hosts antiferromagnetic (AFM) and columnar valence-bond-solid (VBS) ground states. The VBS breaks Z4Z_4 symmetry, and in the presence of arbitrarily weak disorder it forms domains. Using QMC simulations, we demonstrate two kinds of such disordered VBS states. Upon dilution, a removed site leaves a localized spin in the opposite sublattice. These spins form AFM order. For random interactions, we find a different state, with no order but algebraically decaying mean correlations. We identify localized spinons at the nexus of domain walls between different VBS patterns. These spinons form correlated groups with the same number of spinons and antispinons. Within such a group, there is a strong tendency to singlet formation, because of spinon-spinon interactions mediated by the domain walls. Thus, no long-range AFM order forms. We propose that this state is a 2D analog of the well-known 1D random singlet (RS) state, though the dynamic exponent zz in 2D is finite. By studying the T-dependent magnetic susceptibility, we find that zz varies, from z=2z=2 at the AFM--RS phase boundary and larger in the RS phase The RS state discovered here in a system without geometric frustration should correspond to the same fixed point as the RS state recently proposed for frustrated systems, and the ability to study it without Monte Carlo sign problems opens up opportunities for further detailed characterization of its static and dynamic properties. We also discuss experimental evidence of the RS phase in the quasi-two-dimensional square-lattice random-exchange quantum magnets Sr2_2CuTe1−x_{1-x}Wx_xO6_6.Comment: 31 pages, 29 figures; substantial additions in v2; additional analysis in v

    Online Unsupervised Multi-view Feature Selection

    Full text link
    In the era of big data, it is becoming common to have data with multiple modalities or coming from multiple sources, known as "multi-view data". Multi-view data are usually unlabeled and come from high-dimensional spaces (such as language vocabularies), unsupervised multi-view feature selection is crucial to many applications. However, it is nontrivial due to the following challenges. First, there are too many instances or the feature dimensionality is too large. Thus, the data may not fit in memory. How to select useful features with limited memory space? Second, how to select features from streaming data and handles the concept drift? Third, how to leverage the consistent and complementary information from different views to improve the feature selection in the situation when the data are too big or come in as streams? To the best of our knowledge, none of the previous works can solve all the challenges simultaneously. In this paper, we propose an Online unsupervised Multi-View Feature Selection, OMVFS, which deals with large-scale/streaming multi-view data in an online fashion. OMVFS embeds unsupervised feature selection into a clustering algorithm via NMF with sparse learning. It further incorporates the graph regularization to preserve the local structure information and help select discriminative features. Instead of storing all the historical data, OMVFS processes the multi-view data chunk by chunk and aggregates all the necessary information into several small matrices. By using the buffering technique, the proposed OMVFS can reduce the computational and storage cost while taking advantage of the structure information. Furthermore, OMVFS can capture the concept drifts in the data streams. Extensive experiments on four real-world datasets show the effectiveness and efficiency of the proposed OMVFS method. More importantly, OMVFS is about 100 times faster than the off-line methods

    Random-singlet phase in disordered two-dimensional quantum magnets

    Full text link
    We study effects of disorder (randomness) in a 2D square-lattice S=1/2 quantum spin system, the J-Q model with a 6-spin interaction Q supplementing the Heisenberg exchange J. In the absence of disorder the system hosts antiferromagnetic (AFM) and columnar valence-bond-solid (VBS) ground states. The VBS breaks Z4 symmetry, and in the presence of arbitrarily weak disorder it forms domains. Using QMC simulations, we demonstrate two kinds of such disordered VBS states. Upon dilution, a removed site leaves a localized spin in the opposite sublattice. These spins form AFM order. For random interactions, we find a different state, with no order but algebraically decaying mean correlations. We identify localized spinons at the nexus of domain walls between different VBS patterns. These spinons form correlated groups with the same number of spinons and antispinons. Within such a group, there is a strong tendency to singlet formation, because of spinon-spinon interactions mediated by the domain walls. Thus, no long-range AFM order forms. We propose that this state is a 2D analog of the well-known 1D random singlet (RS) state, though the dynamic exponent z in 2D is finite. By studying the T-dependent magnetic susceptibility, we find that z varies, from z=2 at the AFM--RS phase boundary and larger in the RS phase The RS state discovered here in a system without geometric frustration should correspond to the same fixed point as the RS state recently proposed for frustrated systems, and the ability to study it without Monte Carlo sign problems opens up opportunities for further detailed characterization of its static and dynamic properties. We also discuss experimental evidence of the RS phase in the quasi-two-dimensional square-lattice random-exchange quantum magnets Sr2CuTe1−xWxO6.Accepted manuscrip

    Speech Dereverberation Based on Integrated Deep and Ensemble Learning Algorithm

    Full text link
    Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverberation property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data

    Investigation of ultra-thin Al₂O₃ film as Cu diffusion barrier on low-k (k=2.5) dielectrics

    Get PDF
    Ultrathin Al(2)O(3) films were deposited by PEALD as Cu diffusion barrier on low-k (k=2.5) material. The thermal stability and electrical properties of the Cu/low k system with Al(2)O(3) layers with different thickness were studied after annealing. The AES, TEM and EDX results revealed that the ultrathin Al(2)O(3) films are thermally stable and have excellent Cu diffusion barrier performance. The electrical measurements of dielectric breakdown and TDDB tests further confirmed that the ultrathin Al(2)O(3) film is a potential Cu diffusion barrier in the Cu/low-k interconnects system
    • …
    corecore